/***************************************************************************************************
THIS CODE ILLUSTRATES HOW TO CONVERT AN ANALYTICAL SOLUTION FROM POLAR COORDINATES TO
CARTESIAN COORDINATES AND SUBSEQUENTLY BE USED TO INITIALIZE A FLUENT SIMULATION
THIS ONLY WORKS FOR 2D SIMULATIONS.
Coded by Tony Saad, © 2008
downloaded from: http://pleasemakeanote.blogspot.com/
***************************************************************************************************/
#include "udf.h"
#define Pi 3.141592653
DEFINE_INIT(Initialize_Velocity_Field, theDomain)
{
real xCentroid=0.0; /* abscissa of the cell centroid */
real yCentroid = 0.0; /* ordinate of the cell centroid */
real rCentroidMagnitude = 0.0; /* magnitude of the position vector */
real theta = 0.0; /* angle made by the position vector and the x axis */
real uR = 0.0; /* radial velocity (given by the analytical solution) */
real uRx =0.0; /* x projection of the radial velocity */
real uRy = 0.0; /* y projection of the radial velocity */
real uTheta = 0.0; /* tangential velocity (given by the analytical solution) */
real uThetax = 0.0; /* x projection of the tangential velocity */
real uThetay = 0.0; /* y projection of the tangential velocity */
/*declare thread variables*/
cell_t theCell;
real cellCentroidCoordinates[ND_ND];
real origin[ND_ND];
Thread* theThread;
/*-------------------------------------------*/
/* SET THE LOCATION OF THE ORIGIN */
origin[0] = 0.0;
origin[1] = 0.0;
/*-------------------------------------------*/
/* Loop over all cell threads in the domain*/
thread_loop_c(theThread,theDomain) {
/* loop over all cells in the domain thread */
begin_c_loop_all (theCell,theThread) {
/* get the centroid of the current cell */
C_CENTROID(cellCentroidCoordinates,theCell,theThread);
/* take into account the location of the origin */
cellCentroidCoordinates[0] -= origin[0];
cellCentroidCoordinates[1] -= origin[1];
/* store the centroid location for ease of access */
xCentroid = cellCentroidCoordinates[0];
yCentroid = cellCentroidCoordinates[1];
/* compute the radius of the current cell */
rCentroidMagnitude = NV_MAG(cellCentroidCoordinates);
/*-------------------------------------------*/
/* DEFINE THE RADIAL AND AXIAL VELOCITIES */
/* ENTER YOUR ANALYTICAL SOLUTION HERE */
uR = - rCentroidMagnitude;
uTheta = 1/(rCentroidMagnitude + 1/rCentroidMagnitude);
/*-------------------------------------------*/
/* compute the angle made by the position vector and the x-axis */
theta = atan(fabs(yCentroid/xCentroid));
if (xCentroid<=0 && yCentroid>=0) {
theta = Pi - theta;
} else if (xCentroid<=0 && yCentroid<=0) {
theta += Pi;
} else if (xCentroid>0 && yCentroid<0) {
theta =2*Pi - theta;
}
/* compute the x and y components of the radial velocity */
uRx = uR*cos(theta);
uRy = uR*sin(theta);
/* compute the x and y components of the tangential velocity */
uThetax = uTheta*cos(theta + Pi/2);
uThetay = uTheta*sin(theta + Pi/2);
/*set the x and y velocities in fluent*/
C_U(theCell,theThread) = uRx + uThetax;
C_V(theCell,theThread) = uRy + uThetay;
}
end_c_loop_all (theCell,theThread)
}
}