Utah Computational Science and Engineering Lab

interests | publications | notes

I am an assistant professor of Chemical Engineering at the University of Utah. My work is focused on developing models and codes for simulating low-Mach-number reacting flows on supercomputers. I am also interested in analytical and asymptotic methods for fluid flows and all things related.

 


Follow us on YouTube for research and education videos!


Turbulence Generator

Check out our isotropic turbulence generator, featured in OpenFOAM and fully accessible via github and here turbulence.utah.edu where you can generate statistically correct turbulent structures for use in inflow boundary conditions, to seed initial conditions, and for noise generation etc…

Related Publications for this work:

  1. Tony Saad, Derek Cline, Rob Stoll, and James C. Sutherland. “Scalable Tools for Generating Synthetic Isotropic Turbulence with Arbitrary Spectra”. ,http://dx.doi.org/10.2514/1.J055230. (available online: Aug 25, 2016).
  2. Saad, T., & Sutherland, J. C. (2016). Comment on “Diffusion by a random velocity field” [Phys. Fluids 13, 22 (1970)]. Physics of Fluids (1994-Present), 28(11), 119101. https://doi.org/10.1063/1.4968528.
  3. Austin Richards, Tony Saad, and James C. Sutherland. “A Fast Turbulence Generator using Graphics Processing Units”, 2018 Fluid Dynamics Conference, AIAA AVIATION Forum, (AIAA 2018-3559). https://doi.org/10.2514/6.2018-3559.

Funding: University of Utah Department of Chemical Engineering


Dimensional Analysis App (BuckinghamPY)

We developed a very easy to use general dimensional analysis app available here: https://buckinghampi.tsaad.net/

  • Code is freely available on our github @ github.com/saadgroup
  • A YouTube video on how to use the app: https://youtu.be/WGoOQh2MPHI?si=gU7Q2F9nvv3FW_ZE
  1. Karam, Mokbel, and Tony Saad. “BuckinghamPy: A Python software for dimensional analysis.” SoftwareX 16 (2021): 100851. (href: https://www.sciencedirect.com/science/article/pii/S2352711021001291)

Github: https://github.com/saadgroup/BuckinghamPy
Funding: University of Utah, Department of Chemical Engineering


Maximum Entropy Reconstruction

A tool that uses the maximum entropy principle to reconstruct continuous functions and probability distributions from a finite set of known moments. Code can be found at our github.

Code: github.com/saadgroup

  1. Saad, T., & Ruai, G. (2019). PyMaxEnt: A Python software for maximum entropy moment reconstruction. SoftwareX10, 100353. https://doi.org/10.1016/j.softx.2019.100353

Contact Info

Tony Saad
Assistant Professor
Department of Chemical Engineering
University of Utah
email: tony.saad[at]utah.edu
web: http://www.tonysaad.net
YouTube: Professor Saad Explains


Research Interests

  • Low Mach reacting flows
  • Pressure projection methods
  • Theoretical and computational fluid dynamics
  • High performance hybrid computing (CPU, GPU, …)
  • Perturbation methods
  • Population balances
  • Lagrangian particle transport
  • Carbon capture, sequestration, and mineralization

Career


Publications

Peer Reviewed

























Eid, M., Karam, M., & Saad, T. (2024). On the use of Fast Projection Methods with Unsteady Velocity Boundary Conditions. Journal of Computational Physics, Under Review.

Hedworth, H. A., Page, J., Sohl, J., & Saad, T. (2022). Investigating Errors Observed during UAV-Based Vertical Measurements Using Computational Fluid Dynamics. Drones, 6(9), 253. https://doi.org/10.3390/drones6090253

Karam, M., & Saad, T. (2023). On the Theory of Fast Projection Methods for High-Order Navier-Stokes Solvers. Journal of Computational Physics, 112557. https://doi.org/10.1016/j.jcp.2023.112557

Karam, M., & Saad, T. (2022). High-order pressure estimates for Navier-Stokes Runge-Kutta solvers using stage pseudo-pressures. Journal of Computational Physics, 111602. https://doi.org/10.1016/j.jcp.2022.111602

Saad, T., & Karam, M. (2022). Stable timestep formulas for high-order advection–diffusion and Navier–Stokes solvers. Computers & Fluids, 244, 105564. https://doi.org/10.1016/j.compfluid.2022.105564

Saad, T. (2021). Special Issue: CFD and Covid-19. International Journal of Computational Fluid Dynamics, 35(9), 707–707. https://doi.org/10.1080/10618562.2022.2042903

Karam, M., & Saad, T. (2022). Improvements to a Fast Projection Method for the Navier-Stokes Equations. AIAA Journal, In Press. https://doi.org/10.2514/1.J061546

Karam, M., & Saad, T. (2022). High-order pressure estimates for projection-based Navier-Stokes solvers. Journal of Computational Physics, 452, 110925. https://doi.org/10.1016/j.jcp.2021.110925

Karam, M., & Saad, T. (2021). BuckinghamPy: A Python software for dimensional analysis. SoftwareX, 16, 100851. https://doi.org/10.1016/j.softx.2021.100851

Karam, M., Sutherland, J. C., & Saad, T. (2021). Low-cost Runge-Kutta integrators for incompressible flow simulations. Journal of Computational Physics, 110518. https://doi.org/10.1016/j.jcp.2021.110518

Hedworth, H. A., Karam, M., McConnell, J., Sutherland, J. C., & Saad, T. (2021). Mitigation strategies for airborne disease transmission in orchestras using computational fluid dynamics. Science Advances, 7(26), eabg4511. https://doi.org/10.1126/sciadv.abg4511

Hedworth, H. A., Sayahi, T., Kelly, K. E., & Saad, T. (2020). The effectiveness of drones in measuring particulate matter. Journal of Aerosol Science, 105702. https://doi.org/10.1016/j.jaerosci.2020.105702

Karam, M., Sutherland, J. C., & Saad, T. (2020). PyModPDE: A python software for modified equation analysis. SoftwareX, 12, 100541. https://doi.org/10.1016/j.softx.2020.100541

Peterson, B., Humphrey, A., Sunderland, D., Sutherland, J., Saad, T., Dasari, H., & Berzins, M. (2019). Automatic Halo Management for the Uintah GPU-Heterogeneous Asynchronous Many-Task Runtime. International Journal of Parallel Programming, 47(5), 1086–1116. https://doi.org/10.1007/s10766-018-0619-1

Saad, T., & Ruai, G. (2019). PyMaxEnt: A Python software for maximum entropy moment reconstruction. SoftwareX, 10, 100353. https://doi.org/10.1016/j.softx.2019.100353

Saad, T., Cline, D., Stoll, R., & Sutherland, J. C. (2017). Scalable Tools for Generating Synthetic Isotropic Turbulence with Arbitrary Spectra. AIAA Journal, 55(1), 327–331. https://doi.org/10.2514/1.J055230

Saad, T., & Sutherland, J. C. (2016). Comment on “Diffusion by a random velocity field” [Phys. Fluids 13, 22 (1970)]. Physics of Fluids (1994-Present), 28(11), 119101. https://doi.org/10.1063/1.4968528

Saad, T., & Majdalani, J. (2017). Viscous Mean Flow Approximations for Porous Tubes with Radially Regressing Walls. AIAA Journal, 55(11), 3868–3880. https://doi.org/10.2514/1.J055949

Crawford, D. S., Saad, T., & Ring, T. A. (2013). Verification and validation of the maximum entropy method for reconstructing neutron flux, with MCNP5, Attila-7.1.0 and the GODIVA experiment. Annals of Nuclear Energy, 53, 188–191. https://doi.org/10.1016/j.anucene.2012.09.010

Saad, T., & Sutherland, J. C. (2016). Wasatch: An architecture-proof multiphysics development environment using a Domain Specific Language and graph theory. Journal of Computational Science, 17, 639–646. https://doi.org/10.1016/j.jocs.2016.04.010

Saad, T., & Majdalani, J. (2017). Extension of Kelvin’s minimum energy theorem to incompressible fluid domains with open regions. Journal of Fluid Mechanics, 825, 208–212. https://doi.org/10.1017/jfm.2017.413

Saad, T., Abboud, A. W., Smith, S. T., & Ring, T. A. (2015). A class of exact solutions for population balances with arbitrary internal coordinates. AIChE Journal, 1691–1698. https://doi.org/10.1002/aic.14739

Abboud, A. W., Schroeder, B. B., Saad, T., Smith, S. T., Harris, D. D., & Lignell, D. O. (2015). A numerical comparison of precipitating turbulent flows between large-eddy simulation and one-dimensional turbulence. AIChE Journal, 61(10), 3185–3197. https://doi.org/10.1002/aic.14870

Saad, T., & Majdalani, J. (2010). On the Lagrangian optimization of wall-injected flows: from the Hart-McClure potential to the Taylor-Culick rotational motion. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 466(2114), 331–362. https://doi.org/10.1098/rspa.2009.0326

Darwish, M., Saad, T., & Hamdan, Z. (2008). Parallelization of an Additive Multigrid Solver. Numerical Heat Transfer, Part B: Fundamentals: An International Journal of Computation and Methodology, 54(2), 157. https://doi.org/10.1080/10407790802182638

Saad, T., & Majdalani, J. (2012). Some thoughts on the pressure integration requirements of the Navier-Stokes equations. Fluid Dynamics Research, 44(6), 065508. https://doi.org/10.1088/0169-5983/44/6/065508

Maicke, B. A., Saad, T., & Majdalani, J. (2012). On the compressible Hart-McClure and Sellars mean flow motions. Physics of Fluids, 24(9), 096101. https://doi.org/10.1063/1.4748349

Saad, T., Sams, O. C., & Majdalani, J. (2006). Rotational flow in tapered slab rocket motors. Physics of Fluids, 18(10), 103601. https://doi.org/10.1063/1.2354193

Sams, O. C., Majdalani, J., & Saad, T. (2007). Mean Flow Approximations for Solid Rocket Motors with Tapered Walls. Journal of Propulsion and Power, 23(2), 445–456. https://doi.org/10.2514/1.15831

Saad, T., & Majdalani, J. (2009). Rotational Flowfields in Porous Channels with Arbitrary Headwall Injection. Journal of Propulsion and Power, 25(4), 921–929. https://doi.org/10.2514/1.41926

Majdalani, J., & Saad, T. (2007). The Taylor-Culick profile with arbitrary headwall injection. Physics of Fluids, 19(9), 093601–093610. https://doi.org/10.1063/1.2746003

Book Chapter

























Majdalani, J., & Saad, T. (2012). Advanced Fluid Dynamics. In Internal Flows Driven by Wall-Normal Injection (pp. 95–134). INTECH Open Access Publisher. http://doi.org/10.5772/25839

Conference

























Eid, M., & Saad, T. (2024). Fast Projection Methods for Variable Density and low-Mach Reacting Flows. 77th Annual Meeting of the Division of Fluid Dynamics, Submitted.

Saad, T., & Karam, M. (2023, November). The Theory of Fast Projection Methods for High-Fidelity Fast Solution of the Navier-Stokes Equations. 76th Annual Meeting of the Division of Fluid Dynamics. 76th Annual Meeting of the Division of Fluid Dynamics, Washington, DC. https://meetings.aps.org/Meeting/DFD23/Session/A15.9

Saad, T., & Sutherland, J. C. (2018). Case Studies in Using a DSL and Task Graphs for Portable Reacting Flow Simulations. SIAM Conference on Computational Science and Engineering. SIAM Conference on Computational Science and Engineering. url link to talk abstract if any

McConnell, J., Saad, T., & Sutherland, J. C. (2017, April 23). Coupling an explicit lowMach projection scheme to various chemistry models and interphase source terms. 10th US National Combustion Meeting. 10th US National Combustion Meeting, Maryland.

Goshayeshi, B., Saad, T., & Sutherland, J. C. (2017). Hybrid Computing In Large-Scale Multiphysics Simulation: Tabulated Properties and Particle-Cell Interpolations. SIAM Conference on Computational Science and Engineering. SIAM Conference on Computational Science and Engineering. url link to talk abstract if any

Saad, T., & Sutherland, J. C. (2016, November). An Explicit Variable-Density Projection Method for Low-Mach Reacting Flows on Structured Uniform Grids. AIChE Annual Meeting.

Saad, T., Bagusetty, A., & Sutherland, J. C. (2015, March). Wasatch: A CPU/GPU-Ready Multiphysics Code using a Domain Specific Language. SIAM Conference on Computational Science and Engineering.

Saad, T., Earl, C., Bagusetty, A., Might, M., & Sutherland, J. C. (2015, March). Uintah/Wasatch: Addressing Multiphsyics Complexity in a High-Performance Computing Environment. SIAM Conference on Computational Science and Engineering.

Sutherland, J. C., Might, M., Earl, C., & Saad, T. (2014, February). Design Paradigms to Accommodate Architectural Uncertainty in Multiphysics Applications. SIAM Parallel Processing Conference.

Abboud, A. W., Saad, T., Thornock, J., & Smith, S. T. (2013, November). Large Eddy Simulation of a Precipitate Flow With QMOM. AIChE Annual Meeting.

Schmidt, J., Berzins, M., Thornock, J., Saad, T., & Sutherland, J. (2013, May). Large Scale Parallel Solution of Incompressible Flow Problems using Uintah and Hypre. International Symposium on Cluster, Cloud and Grid Computing.

Biglari, A., Saad, T., & Sutherland, J. C. (2013). An Efficient and Explicit Pressure Projection Method for Reacting Flow Simulations. 8th National US Combustion Meeting, 1–14.

Biglari, A., Saad, T., & Sutherland, J. C. (2013, April). A Time-Accurate Pressure Projection Method for Reacting Flows. SIAM Numerical Combustion Conference.

Abboud, A. W., Smith, S. T., Saad, T., & Thornock, J. (2012, October). Modeling Precipitation Reactions in Turbulent Flow with QMOM Incorporated Into LES. AIChE Annual Meeting.

Earl, C. W., Robison, D., Saad, T., Sutherland, J. C., & Might, M. (2012, May). Automated Algorithm Construction for Large Scale Computational Physics and Reacting Flow Simulations : Software Infrastructure. Parallel Computational Fluid Dynamics.

Abboud, A. W., Smith, S. T., Saad, T., & Ring, T. A. (2011, October). A Study of Population Balance Modeling in a Large-Eddy Simulation with Carbonate Precipitation. AIChE Annual Meeting.

Sutherland, J. C., & Saad, T. (2011, October). A Novel Computational Framework for Reactive Flow and Multiphysics Simulations. AIChE Annual Meeting.

Saad, T., Smith, S. T., Abboud, A. W., & Ring, T. A. (2011, October). On a Class of Analytical Solutions for the Population Balance Equation. AIChE Annual Meeting.

Robinson, D., Punati, N., Saad, T., & Sutherland, J. C. (2011). A Novel Computational Approach for Multiphysics and Reactive Flow Simulations. Proceedings of the Combustion Institute.

Saad, T., & Majdalani, J. (2011). Some Thoughts on Kelvin’s Minimum Energy Theorem. International Conference on Advanced Research and Applications in Mechanical Engineering.

Saad, T., & Darwish, M. (2009). A High Scalability Parallel Algebraic Multigrid Solver. In Computational Fluid Dynamics 2006 (pp. 231–236).

Saad, T., & Darwish, M. (2006). A high scalability parallel algebraic multigrid solver. European Conference on Computational Fluid Dynamics, 231–236.

Saad, T. (2005, May). Implementation and Performance Analysis of a Parallel Algebraic Multigrid Solver. 4th FEA Student Conference at the American University of Beirut. http://www.tonysaad.net/docs/conference/Saad-2005-Implementation-and-Performance-Analysis-of-a-Parallel-Algebraic-Multigrid-Solver.pdf

‪The Theory of Fast Projection Methods for High-Fidelity Fast Solution of the Navier-Stokes Equations‬. (n.d.). Retrieved November 27, 2023, from https://scholar.google.com/citations?view_op=view_citation&hl=en&user=T0rEL0oAAAAJ&sortby=pubdate&citation_for_view=T0rEL0oAAAAJ:rO6llkc54NcC

Dissertation

























Saad, T. (2010). Theoretical Models for Wall Injected Duct Flows. University of Tennessee.


Notes